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ABSTRACT: Satellite observations show a near-zero trend in the top-of-atmosphere global-mean net cloud radiative
effect (CRE), suggesting that clouds did not further cool nor heat the planet over the last two decades. The causes of this
observed trend are unknown and can range from effective radiative forcing (ERF) to cloud feedbacks, cloud masking, and
internal variability. We find that the near-zero NetCRE trend is a result of a significant negative trend in the longwave
(LW) CRE and a significant positive trend in the shortwave (SW) CRE, cooling and heating the climate system, respec-
tively. We find that it is exceptionally unlikely (,1% probability) that internal variability can explain the observed LW and
SW CRE trends. Instead, the majority of the observed LWCRE trend arises from cloud masking wherein increases in
greenhouse gases reduce OLR in all-sky conditions less than in clear-sky conditions. In SWCRE, rapid cloud adjustments
to greenhouse gases, aerosols, and natural forcing agents (ERF) explain a majority of the observed trend. Over the north-
east Pacific, we show that ERF, hitherto an ignored factor, contributes as much as cloud feedbacks to the observed
SWCRE trend. Large contributions from ERF and cloud masking to the global-mean LW and SW CRE trends are supple-
mented by negative LW and positive SW cloud feedback trends, which are detectable at 80%–95% confidence depending
on the observational uncertainty assumed. The large global-mean LW and SW cloud feedbacks cancel, leaving a small net
cloud feedback that is unconstrained in sign, implying that clouds could amplify or dampen global warming.
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1. Introduction

The top-of-atmosphere cloud radiative effect (CRE) is de-
fined as the difference between outgoing clear-sky radiative
flux and all-sky radiative flux (Ramanathan et al. 1989). CRE
observations by the Clouds and the Earth’s Radiant Energy
System (CERES) satellite (Loeb et al. 2018b) over the last two
decades indicate a globally averaged longwave (LW) CRE and
shortwave (SW) CRE of approximately 26 and 245 W m22,
heating and cooling the climate system, respectively. Therefore,
the net effect of clouds (NetCRE 5 LWCRE 1 SWCRE) is
219 W m22, cooling the planet. Even a 10% change in this
quantity, approximately equal to the total present-day radiative
forcing due to CO2, would be a large change in the heat budget
of the climate system (Forster et al. 2021). Despite its signifi-
cance, current understanding of how CRE changes in response

to external forcing is poor and how this net cooling effect of
clouds changes has been a constant source of uncertainty in
how much future global warming will occur (e.g., Zelinka et al.
2020). In particular, there is a lack of understanding of how ob-
served trends in CRE, that heat or cool the climate system,
have been influenced by the observed trends in greenhouse
gases, aerosols, global warming (0.23 6 0.02 K decade21;
GISTEMP Team 2023; Lenssen et al. 2019), and internal
variability. The satellite measurements of CRE provide a
prime opportunity to better understand the drivers of trends
in CRE and better our theoretical and modeling under-
standing of CRE changes.

Traditionally, a radiative change is decomposed into contri-
butions from an external radiative forcing perturbation (solar,
volcanoes, greenhouse gases, aerosols, land use, etc.) and the
radiative response to this external forcing (e.g., Ramaswamy
et al. 2019). Raghuraman et al. (2021a) modified this tradi-
tional forcing–feedback framework for the purposes of inter-
preting the observed radiation record in the context of
internal variability in the climate system. Compared to the
traditional framework, which is often used for large pertur-
bations, accommodating internal variability is important for
time-evolving changes in a 20-yr record. This is because ob-
servations show only one realization of the planet, but Earth
could have taken many different paths due to internal vari-
ability. The observed changes in CRE, i.e., DCRE, are there-
fore a convolution of changes in effective radiative forcing
(DERFCRE), the radiative response to this forcing, i.e., warm-
ing-induced CRE change (DWCRE 5 lCREDTs, where lCRE

is the feedback that amplifies or diminishes the surface
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temperature response), and internal variability («CRE). An
observed anomaly in CRE can thus be written as

DCRE 5 DERFCRE 1 DWCRE 1 eCRE: (1)

A vast amount of previous literature has focused on how
cloud changes in response to warming impact the observed ra-
diation budget, i.e., observationally deriving cloud feedbacks
(lcloud 5 lCRE2lcloud-masking; appendix) (Bellomo et al. 2014;
Brient and Schneider 2016; Ceppi and Nowack 2021; Cesana
et al. 2019; Cesana and Del Genio 2021; Chao and Dessler
2021; Chao et al. 2022; Dessler 2010, 2013; Dessler and Loeb
2013; Lutsko et al. 2021; Myers et al. 2021; Scott et al. 2020;
Yue et al. 2019; Zhou et al. 2013). However, studies have fo-
cused less on the impact of cloud feedbacks on the decadal
trends in the radiation budget. Given the longer satellite record,
we can now compute whether significant decadal trends in
cloud feedbacks can be detected. A significant decadal trend in
cloud feedback would point to a longer-term signal, as opposed
to inferring cloud feedback from interannual variability.

Apart from cloud properties impacting CRE, noncloud
properties such as well-mixed greenhouse gases, water vapor,
temperature, and surface albedo can also impact anomalies in
CRE because the existence of clouds will mask the effect of
the changes in noncloud properties. This is known as cloud
masking. The contributions to DCRE from ERF, cloud mask-
ing, and internal variability have been studied far less.

ERF constitutes instantaneous radiative forcing (IRF) and
rapid cloud adjustments in response to greenhouse gases,
aerosols, etc., which are separate from surface temperature-
mediated feedbacks (except for the impact of land warming).
The contribution of adjustments to CRE changes has been
calculated in quadrupling CO2 climate model experiments as
well as cloud-resolving models (Block and Mauritsen 2013;
Gregory and Webb 2008; Romps 2020; Salvi et al. 2021;
Schneider et al. 2019; Wyant et al. 2012). However, there is a
lack of research on ERF’s contributions to the observed CRE
record. Furthermore, previous regional analyses such as over
the northeast Pacific have focused on cloud feedbacks and
have not accounted for potential ERF contributions (Clement
et al. 2009; Myers et al. 2018).

The noncloud effects, i.e., cloud masking, have been known
to contribute significantly to CRE changes in climate model ex-
periments (Soden et al. 2004, 2008). However, its contributions
to observed CRE changes have been unexplored. Despite
knowing that CRE in response to warming is different from the
cloud feedback, CRE is still often used as proxy for cloud feed-
back or the potential for a contribution from ERF or cloud
masking is ignored in the derivation of observational cloud
feedbacks (Brient and Schneider 2016; Ceppi and Nowack
2021; Cesana et al. 2019; Cesana and Del Genio 2021; Lutsko
et al. 2021; Webb and Lock 2013; Webb et al. 2015a,b, 2018;
Webb and Lock 2020). This could be artificially inflating the
true value of cloud feedbacks and will be explored later in this
paper. When cloud masking is accounted for, it is often only
used toward the goal of getting to the cloud feedback (e.g.,
Dessler 2010; Chao et al. 2022), instead of paying specific atten-
tion to it and being analyzed separately.

By combining and synthesizing various datasets, models,
methods, and experiments, we aim to answer the following ques-
tions that will help better understand what mechanisms drive the
observed CRE trends: 1) What is the range of CRE trends that
can be obtained solely from internal variability? Do the observed
trends lie within or outside this range? 2) What is the direct ef-
fect of greenhouse gas, aerosol, and natural forcing agent
changes (ERF) on CRE trends? 3) What is surface warming’s
impact on the observed and modeled CRE trends? 4) How do
noncloud properties such as temperature, water vapor, surface
albedo affect the CRE trends? 5) What is the radiative impact of
cloud changes solely due to surface warming, i.e., cloud feed-
back? The next section details the various observational, reanaly-
sis, and model data used. Section 3 elucidates the climate model
experiments and partial radiation perturbation experiments used
in this study. Section 4 lists the results of the paper where we an-
swer the aforementioned questions by quantifying the trends in
CRE due to internal variability, ERF, cloud masking, and cloud
feedbacks. Section 5 discusses the results presented. Finally,
section 6 provides a summary and broader conclusions of
our study.

2. Observations of DCRE

We use top-of-atmosphere radiative fluxes from the Clouds
and the Earth’s Radiant Energy System (CERES) Energy
Balance and Filled (EBAF) Edition 4.1 satellite observational
product (Loeb et al. 2018b) to quantify the left-hand side of
Eq. (1). CERES EBAF provides clear-sky and all-sky LW,
SW, and Net fluxes. The observations are provided globally at
monthly-mean temporal resolution. We predominantly use
the data during January 2001–December 2020 but also use the
period of March 2000–June 2021. Within the clear-sky fluxes,
two versions are provided: CERES “t” where observed fluxes
are provided for the entire grid box and CERES “c” where
observed fluxes are provided only for the clear-sky areas of
the grid box (Loeb et al. 2020a). Since CERES “t” is consis-
tent with how climate models calculate clear-sky fluxes, we
use this product throughout the paper.

Although CERES is highly stable and shows close agree-
ment in retrievals between the satellites it derives its data
from, there can be uncertainties in trends arising from calibra-
tion, drift, and other observational uncertainties (Loeb et al.
2016, 2018a; Loeb and Doelling 2020; Raghuraman et al.
2021a). To that end, we attach an observational uncertainty in
trends of60.20 Wm22 decade21 for clear-sky, all-sky, and CRE
fluxes globally and at each grid point, following Raghuraman
et al. (2021a), hereafter referred to as the R21 uncertainty. We
also use an alternative observational uncertainty for trends in
CRE of 60.085 W m22 decade21 given by Loeb et al. (2021b),
hereafter referred to as the L21 uncertainty. The R21 uncertainty
arises from Earth’s energy imbalance (EEI) trend differences be-
tween different satellites CERES derives its data from as well as
ocean heat uptake trends from Argo measurements. This as-
sessed uncertainty is then assumed for CRE trends. The L21 un-
certainty arises solely from CRE trend differences between
CERES satellites.

J OURNAL OF CL IMATE VOLUME 364152

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:03 PM UTC



In section 5, we also use the CERES FluxByCloudType
(FBCT) product (Sun et al. 2022) to better understand the verti-
cal structure of the observed CRE trends. We calculate CRE in
CERES-FBCT by differencing the clear-sky and the all-sky
fluxes for each grid box, following Eq. (5) of Scott et al. (2020).
Finally, to calculate observed surface temperature-induced feed-
backs, we use NASA GISTEMP surface temperature anomalies
(Lenssen et al. 2019). Although observations provide unprece-
dented information about the changing nature of CRE, deci-
phering the causes of the trends in CRE from observations alone
is difficult. To understand the causes, we conduct a range of
model experiments that are described below.

3. Methods

Below we describe each component on the right-hand side
of Eq. (1), and the components are summarized in Table 1.

a. Internal variability («CRE): CMIP6 Control and
AM4 Control

We use 41 models’ outputs of TOA radiation in clear-sky
and all-sky, LW and SW radiation from experiments in the
Coupled Model Intercomparison Project phase 6 (CMIP6) ar-
chive (Eyring et al. 2016). We use the preindustrial control ex-
periment for each model, wherein forcing agents are fixed at
1850 values and the coupled models have freely evolving
lower boundary conditions. We use this experiment, labeled
as “CMIP6 Control” in the rest of the paper, to diagnose the
range of trends in CRE that can occur in a 20-yr period, aris-
ing solely from internal variability. We use consecutive,
nonoverlapping 20-yr periods in each model (in total 1144
periods/realizations) and the 62s range of trends in these
20-yr periods is «CRE.

We conduct another control experiment wherein we quan-
tify the trends in 20-yr periods arising solely from atmospheric
stochasticity, as opposed to the CMIP6 Control simulations

which contain both atmospheric and oceanic variability. Using
GFDL’s atmosphere-only model AM4 (Zhao et al. 2018), we
prescribe SSTs taken from a climatological GFDL CM4 pre-
industrial control experiment and repeat these same SSTs
year-on-year (fixed SSTs) to produce a 200-yr time series
(AM4 Control). To create a longer time series, this is then
bootstrapped to further form a 2000-yr time series. We calcu-
late the trend in each of the one-hundred 20-yr consecutive,
nonoverlapping periods. The 62s range of these 100 trends
provides us another estimate of «CRE. Finally, we conduct an
initial condition large ensemble (20 realizations) experiment
which allows radiative forcing agents (well-mixed greenhouse
gases, ozone, anthropogenic sulfate, and black carbon) to
vary during 2001–20 in addition to the prescribed SSTs and
sea ice (AM4 PSST 1 ERF) (used in Raghuraman et al.
2021a). This experiment provides the total CRE, i.e., the sum
of the ERF and radiative response DERFCRE 1 DWCRE as
well as another estimate of the internal variability «CRE.

b. Effective radiative forcing (DERFCRE): RFMIP

To better understand how much of the modeled CRE
changes arise from forcing versus feedback, we analyze 7 of the
41 models above that provided estimates of the effective radia-
tive forcing during 2001–20. This has been made possible by the
transient forcing experiments in the Radiative Forcing Model-
ing Intercomparison Project (RFMIP) which simulates forcing
agent changes in the model with SSTs fixed (Pincus et al. 2016).
Each model produced three realizations (unless otherwise
stated) and provided a further breakdown of all forcing agents
(piClim-histall) into its contributions from greenhouse gases
(piClim-histghg), aerosols (piClim-histaer), and natural forcing
(solar and volcanic) (piClim-histnat). We note that recent up-
dates to the Community Emissions Data Systems (CEDS)
show larger decays in global aerosol emission than previous re-
lease versions (Hoesly et al. 2018; O’Rourke et al. 2021),
thereby underestimating the aerosol emission decreases used in

TABLE 1. Summary of how each component of Eq. (1) is quantified. Temporal anomaly denoted by D. Acronyms: CRE 5 cloud
radiative effect (top-of-atmosphere), CERES EBAF 5 Clouds and the Earth’s Radiant Energy System Energy Balanced and Filled,
CMIP6 5 Coupled Model Intercomparison Project phase 6, GFDL AM4 5 Geophysical Fluid Dynamics Laboratory Atmosphere
Model 4, ERF 5 effective radiative forcing, SST 5 sea surface temperature, RFMIP 5 Radiative Forcing Model Intercomparison
Project, W 5 warming-induced, PSST 5 prescribed SSTs and sea ice [Atmospheric Model Intercomparison Project (AMIP)
conditions], H2O 5 specific humidity, Ta 5 atmospheric temperature, Ts 5 surface temperature, ERA5 5 European Centre for
Medium-Range Weather Forecasts Reanalysis version 5, RRTMGP 5 Rapid Radiative Transfer Model for General Circulation
Model Applications–Parallel.

Quantity Derivation

DCRE Observations of CRE from CERES EBAF Ed4.1
«CRE 2s range of linear trends through 20-yr periods in CMIP6 Control and GFDL AM4

simulations
DERFCRE Transient forcing in fixed-SST simulations in RFMIP models
DWCRE DCRE 2 DERFCRE

Observations: difference between observed DCRE and multimodel mean DERFCRE.
Model: 1) difference between CMIP6 DCRE and DERFCRE and 2) GFDL AM4 PSST

DWcloud-masking DWH2O
1DWTa

1 DWTs
1DWsurface-albedo

Partial radiation perturbation experiments with ERA5 meteorological inputs to radiative
transfer model (RRTMGP)

DWcloud DCRE 2 DERFCRE 2 DWcloud-masking
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this study. Finally, the difference between AM4 PSST 1 ERF
and AM4 PSST (described below; both used in Raghuraman
et al. 2021a) provides another estimate of DERFCRE, which will
be used alongside RFMIP’s estimates.

c. Warming-induced CRE (DWCRE): Observational
derivation, coupled models, and AMIP

First, we obtain an observationally derived DWCRE, i.e., the
CRE radiative response, by subtracting the RFMIP multimo-
del mean DERFCRE from the observed DCRE. Since warming-
induced CRE could include internal variability, we attach the
measure of internal variability uncertainty («CRE from CMIP6
Control) to the observed DWCRE. Second, we quantify DWCRE

in seven coupled models by subtracting DERFCRE from
their Historical (2001–14) 1 SSP2-4.5 (2015–20; Gidden et al.
2019) DCRE simulations. Third, we quantify DWCRE over
this period in GFDL AM4 with AMIP conditions. We simu-
late an initial condition large ensemble (20 realizations) ex-
periment of 2001–20 radiative fluxes with GFDL AM4 with
prescribed SSTs and sea ice (AMIP) and radiative forcing
fixed at 2014 levels (AM4 PSST). The mean of this ensem-
ble’s trends provides the best estimate of the radiative re-
sponse (DWCRE) and the 2s range of trends provides another
estimate of «CRE.

We note here the distinction between what we term ERF
versus radiative response/feedback. This distinction is impor-
tant to consider since parts of ERF could be considered as
“feedbacks” especially when viewed from the observational
perspective. For example, despite having fixed SSTs in the
RFMIP simulations, models will have a land warming impact
that may impact CRE (Andrews et al. 2021). This land warm-
ing is considered to be a part of the ERF component rather
than the response/feedback component. Therefore, in this
study, we assume that ERF arises from forcing agent changes
without SST changes while radiative response/feedback arises
from SST changes without forcing agent changes.

d. Decomposing DCRE into cloud and cloud-masking
contributions: PRP experiments

To decompose fluxes in an alternate manner that focuses on
particular processes, we employ the partial radiation perturba-
tion (PRP) method. This method has been used extensively
over the last few decades for climate feedback decompositions
(e.g., Colman and McAvaney 1997; Soden et al. 2008) and more
recently has also been used for decompositions of observed
time series fluxes (e.g., Clark et al. 2021; Raghuraman et al.
2019; Thorsen et al. 2018). PRP is used here to isolate the radia-
tive impact of a particular quantity’s temporal change, i.e., we
quantify the contributions to DCRE from changes in water va-
por, surface temperature, atmospheric temperature (including
stratospheric temperature), surface albedo, well-mixed green-
house gases, ozone, and clouds. It allows us to decompose
DCRE into the sum of contributions from cloud changes and
noncloud changes, also known as cloud-masking changes. We
refer the reader to the appendix for further details.

To conduct the PRP experiments, we use reanalysis meteo-
rological monthly-mean data as input for an offline radiative

transfer model called the Rapid Radiative Transfer Model for
General Circulation Model Applications–Parallel (RRTMGP)
(Pincus et al. 2019). Computing all-sky fluxes required a careful
treatment of cloud overlap, coverage, etc., so we stochastically
generate 10 subcolumns for each grid box following Pincus et al.
(2006) and Tompkins (2002). We used the European Centre for
Medium-RangeWeather Forecasts Reanalysis version 5 (ERA5;
Hersbach et al. 2020) product’s meteorological quantities for the
PRP experiments (appendix). We found that ERA5’s outputs of
TOA radiation variability and trends had higher fidelity in
matching observations compared to MERRA-2 (Fig. 1 in the on-
line supplemental material; Gelaro et al. 2017). Finally, we used
NOAA’s annual greenhouse gas index (AGGI) data, which
compiles observations of CO2, CH4, N2O, CFCs, and HFCs con-
centrations up to present day (Hofmann et al. 2006).

e. Cloud feedback: Observational derivation

DCRE is the sum of the cloud and cloud-masking compo-
nents [Eq. (A3c)]. We use the PRP decomposition to quantify
the warming-induced cloud masking present in DCRE and ob-
tain the satellite-derived cloud feedback by subtracting this
warming-induced cloud masking as well as RFMIP’s DERFCRE

from the observed CRE [Eq. (A4b)]. This method is commonly
used in previous studies that obtained observational cloud feed-
backs (e.g., Dessler 2013). Since cloud feedbacks could include
internal variability, we attach the measure of internal variability
uncertainty (eCRE from CMIP6 Control) to the observed LW,
SW, and Net cloud feedbacks. Observational and internal vari-
ability uncertainties are combined in quadrature.

4. Results

a. Internal variability (eCRE)

As shown in Figs. 1a and 1c (and the accompanying time series
in supplemental Fig. 2), CERES LWCRE and SWCRE trends
are statistically significant after accounting for observational un-
certainty. However, it is unclear how these observed trends
should be interpreted, i.e., what is the context of these trends in
the presence of internal variability on the planet? In Figs. 1a, 1c,
and 1e, we plot the probability distribution of all the 20-yr
CRE trends (in total 1144 trends) from the CMIP6 Control
experiment. We find that for LW, SW, and Net CRE, each
control distribution’s mean is centered at 0 and follows a
Gaussian distribution. In LWCRE, the spread of possible
trends in a 20-yr period due to internal variability is narrow,
i.e., e 5 60.08 W m22 decade21. In SWCRE and NetCRE,
they have wider ranges: e 5 60.18 and60.16 Wm22 decade21,
respectively.

CERES trends in LWCRE and SWCRE are 20.35 and
0.33 W m22 decade21, respectively, which are 2–4 times larger
than e. Even when a conservative estimate of observational un-
certainty is used on the CERES trends (60.20 Wm22 decade21,
R21 uncertainty) as a normal distribution, the probability that inter-
nal variability alone caused the observed LW and SW CRE trends
is exceptionally unlikely (,1%; Mastrandrea et al. 2010). For ex-
ample, in the case CERES SWCRE, the probability that a trend
from CMIP6 Control has a large trend (.0.16 W m22 decade21;
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point of intersection of the two curves) is ;3.6%, and the
probability that CERES had a small trend due to drift or
other observational uncertainties (,0.16 W m22 decade21)
is ;4.2%. The probability of whether these two events oc-
cur in the same 20-yr period is what is of interest to this
study. Since these are independent events, the probabilities
can be multiplied which yields ;0.15%. If a uniform distri-
bution or a skewed normal distribution is instead used on
the observational trends, this probability would be slightly
larger but would still be exceptionally unlikely.

We found that as more years are added to the time period,
the range of trends (eCRE) reduces exponentially (supplemen-
tal Fig. 3). By 2020, the observed LW and SW CRE trends are
detectable over observational uncertainty and internal variabil-
ity. By 2030, LWCRE e will decrease further by 60%, SWCRE
e will decrease further by 35%, and NetCRE e will decrease fur-
ther by 30% (in GFDL CM4 Control). These results are consis-
tent with other studies who also showed large decreases in
uncertainty due to internal variability with time (Loeb et al.
2022; Raghuraman et al. 2021a; Zhou et al. 2015). This can also
be seen in observed CRE trends wherein the trends vary sub-
stantially when only less than a decade of data are used but con-
verges on a long-term value when closer to two decades of data
are used at which point the observed trends are insensitive to
start and end dates (supplemental Fig. 4). Overall, these results
show the value of a continuous climate data record of Earth ra-
diation budget changes (Shankar et al. 2020).

We find that the eCRE obtained from the coupled model GFDL
CM4 is similar to the e values in the hierarchy of the atmosphere-
only model GFDL AM4 experiments in LWCRE, SWCRE, and
NetCRE (Figs. 1b,d,f). This implies that e is unaffected by forcing
and feedbacks in our experiments because it was unchanged un-
der a range of boundary conditions and forcings: freely evolving
SSTs (CM4 Control), fixed SSTs (AM4 Control), prescribed SSTs
(AM4 PSST), and prescribed SSTs and ERF (AM4 PSST 1

ERF). Overall, CERES LW and SW CRE trends lie outside the
realm of internal variability whether generated by coupled models
or an atmosphere-only model. Interestingly, the NetCRE CERES
trend seems to be a part of the internal variability ensemble. How-
ever, we now know that this is due to the strong LW and SW
CRE trends that are detectable above observational uncertainty
and internal variability which cancel to yield a weak NetCRE
trend. This cancellation suggests a role of external forcing and
feedbacks in the observed LW and SW CRE trends, which is ex-
plored below.

b. Effective radiative forcing (DERFCRE)

We next explore the role of radiative forcing in the ob-
served CRE trends. We analyze DERFCRE trends over
2001–20 period from the seven models participating in the
RFMIP historical forcing experiments, which arise from in-
stantaneous radiative forcing as well as adjustments which
are not sea surface temperature mediated. We find signifi-
cant trends in LWCRE, SWCRE, and NetCRE due to all

FIG. 1. 2001–20 CERES trends and internal variability trends. (a) Probability distributions of LWCRE trends in CERES
observations (assumed to beGaussian) and CMIP6 Control LWCRE trends in 20-yr periods. (b) Range of trends due to in-
ternal variability in various model ensembles; n represents number of realizations (trends in 20-yr periods). (c) As in (a),
but for SWCRE. (d) As in (b), but for SWCRE. (e) As in (a), but for NetCRE. (f) As in (b), but for NetCRE. Solid lines
and dashed lines represent R21 and L21 observational uncertainties, respectively.
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forcing agents. The multimodel mean DERFLWCRE trend is
20.11 6 0.01 W m22 decade21, DERFSWCRE trend is 0.19 6

0.04 W m22 decade21, and the DERFNetCRE trend is 0.08 6

0.04 W m22 decade21 (95% CI about the mean) (Fig. 2a). This
result is robust across models (barring NASA GISS-E2.1-G
in SWCRE and hence NetCRE). Thus, the negative trend in
DERFLWCRE can help explain the observed negative trend in
LWCRE and the positive trend in DERFSWCRE alone could poten-
tially explain the majority of the observed positive trend (;57%).

Given these significant DERFCRE trends arising from all
forcing agents acting together, it is important to understand
the contributions from each agent. The negative trend in
DERFLWCRE from all forcing agents predominantly arises
from greenhouse gas increases over the period (Fig. 2b). In
section 4d we will further explore the source of this trend us-
ing an offline radiative transfer model. The positive trend in
DERFSWCRE from all forcing agents can be seen to arise from
changes in greenhouse gases, aerosols, and natural forcing
agents (Figs. 2b–d). It has been shown in large-eddy simula-
tions that the increase in greenhouse gases decreases cloud-
top radiative cooling which decreases cloud cover although
this has not been confirmed in climate models (e.g., Schneider
et al. 2019). This cloud cover decrease in turn decreases reflec-
tion of sunlight particularly over the west coasts of continents
where low-lying clouds are pervasive which is seen in AM4
(supplemental Fig. 5, Fig. 2b).

The decrease in aerosols in the midlatitudes, particularly
over the United States and Europe (Loeb et al. 2021a), has

been shown recently to cause a decrease in liquid water path
in AM4 via the second aerosol indirect effect (Raghuraman
et al. 2021a), however this is model dependent (Fig. 2c). This
decreases reflection of sunlight by clouds, i.e., a positive trend
in SWCRE. In addition to aerosol-heavy regions in the mid-
latitudes, a positive DERFSWCRE trend due to aerosols were
found to contribute over oceanic regions too, which previ-
ous studies have pointed toward too (e.g., Wilcox et al.
2006). We note that Community Emissions Data Systems
(CEDS) indicates larger aerosol decays so our DERFSWCRE

trends due to aerosols alone may be even more positive. By
the end of the century, however, the greenhouse gas adjust-
ments dominate over the aerosol and natural components
(supplemental Fig. 5). We also found that models largely
imitate the global-mean results (Fig. 2) in the tropical mean
too (supplemental Fig. 6).

We further probe the observed positive SWCRE trend and
its causal factors. In Fig. 3a, we show that the global-mean
CERES-observed positive SWCRE trend manifests spatially
too as a positive trend across large swaths of the ocean as well
as some land portions. We focus on the northeast Pacific to
show how important the ERF contribution to SWCRE is.
ERF was not considered in previous analyses and the change
in northeast Pacific reflection was assumed to only be SST-
driven (Andersen et al. 2022; Loeb et al. 2018a, 2020b; Myers
et al. 2018). Figure 3b shows that the DERFSWCRE trend mag-
nitude is as large as the SST-mediated SWCRE response
(AM4 PSST). We find that this is partly because low cloud

FIG. 2. 2001–20 global-mean trends in effective radiative forcing in LWCRE, SWCRE, and NetCRE. Each realiza-
tion is represented by a hollow circle and the mean is represented by the bar. (a) All forcing agents varying.
(b) Greenhouse gases only varying. (c) Aerosols only varying. (d) Natural forcing agents only varying.

J OURNAL OF CL IMATE VOLUME 364156

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:03 PM UTC



cover in response to forcing alone showed a decrease of
0.3% decade21 for the subset of models that outputted this
quantity. Importantly, we find that the positive DERFSWCRE

trend is robust across models. Although the response and ERF

when summed together would fall into CERES’ uncertainty
range, they underestimate the central CERES trend value.

Previous work has also assumed much of the observed
SWCRE change in the northeast Pacific can be attributed to

FIG. 3. (a) Spatial pattern of CERES-observed SWCRE trends. (b) Trends in SWCRE in CERES,
AM4 PSST, and RFMIP models over the northeast Pacific region [outlined by the box in (a)
and follows the Loeb et al. (2020b) definition]. Trends in low cloud cover over the northeast
Pacific region arising solely from ERF are plotted for a subset of RFMIP models. Hollow
circles represent each 20-yr trend and the ensemble means are plotted in filled circles. Red
filled circle represents multimodel mean. Error bars represent the 95% CI around the mean.
In CERES’s case this represents observational uncertainty and internal variability uncer-
tainty (standard error associated with linear fit). In the models’ case the 95% CI is given by
1:963 s/

��

n
√

, where s is the standard deviation of the ensemble’s trends and n is the number
of realizations. (c) Time series of the CERES-observed SWCRE monthly anomalies over
the northeast Pacific region and the Pacific decadal oscillation index. The r2 value between
the curves is noted. Dashed lines indicate trends.
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the Pacific decadal oscillation (PDO) (Loeb et al. 2018a,
2020b, 2021b). Figure 3b shows that a large range of SST-
mediated SWCRE trends are possible, despite giving the
model the same AMIP SST pattern in each realization (which
contains the PDO). Thus, due to atmospheric noise, the same
SST pattern and PDO can yield a negative, near-zero, or positive
trend in SWCRE (Fig. 3b, SWCRE response). Furthermore, we
show that, the PDO index and CERES SWCRE over the north-
east Pacific are poorly correlated and the trend in the PDO index
is near-zero while CERES SWCRE over the northeast Pacific is
strongly positive (Fig. 3c). Loeb et al. (2021b) argued that the
change in sign of the PDO in 2014 can help explain TOA radia-
tion trends, however, Fig. 3c shows that PDO started shifting
back to a negative phase in 2018, yet SWCRE continues to have
a positive trend in the northeast Pacific. In summary, over the
northeast Pacific we show that 1) ERF has a large responsibility
for the reflection decrease, 2) an SST pattern supported this re-
flection decrease, and 3) the PDO is not the SST pattern that
caused this long-term reflection decrease.

c. Warming-induced CRE (DWCRE)

Given the important roles ERF and e play in the CRE trends’
magnitudes and uncertainty, the observed CRE trends thus can-
not be attributed solely to the warming-induced CRE trends
[Eq. (1)]. We obtain an observationally derived DWCRE trend
by subtracting the RFMIP multimodel mean DERFCRE trend
from the observed DCRE trend and attach to it observational
uncertainty and internal variability uncertainty (eCRE) (Fig. 4).
The results remain the same when calculating the observa-
tionally derived DWCRE trend eight different times with
each RFMIP model instead of using the multimodel mean
DERFCRE trend (supplemental Fig. 7). We find that the ob-
servationally derived DWLWCRE trend is negative, implying
that surface warming decreases LWCRE, cooling the cli-
mate system. Its mechanisms will be explained in the next
subsection. On the other hand, the observationally derived
DWSWCRE trend is positive but is not statistically significant,
i.e., the SWCRE warming response could either heat or cool

FIG. 4. Global-mean observationally derived and modeled warming-induced CRE trends dur-
ing 2001–20. (a) LWCRE. (b) SWCRE. (c) NetCRE. Shading indicates the 95% CI comprising
internal variability uncertainty («CRE from CMIP6 Control) and R21 observational uncertainty.
Dashed lines represent uncertainty due to internal variability uncertainty and L21 observational
uncertainty. Green error bar represents model’s 95% CI (1:963 s/

��

n
√

; «CRE/
��

n
√

, where n rep-
resents the number of realizations). GISS-E2.1-G in p1f2 configuration. GFDL AM4 given by
AM4 PSST experiment.

J OURNAL OF CL IMATE VOLUME 364158

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:03 PM UTC



the climate system. As a result, the NetCRE warming re-
sponse could also either heat or cool the climate system.

CMIP6 models’ DWCRE estimates are also provided using the
CMIP6 Historical and RFMIP ERF experiments. The robust
agreement in DERFCRE between these models in Fig. 2 stands
in sharp contrast to the wide range of CRE responses to surface
warming in Fig. 4. The 62s range (intermodel spread) of
DERFCRE trends across models for LWCRE, SWCRE, and
NetCRE is 60.06, 60.16, and 60.17 W m22 decade21, respec-
tively. The 62s range (intermodel spread) of DWCRE estimates
across models for LWCRE, SWCRE, and NetCRE is 60.17,
60.39, and60.33 Wm22 decade21, respectively; approximately
2–3 times larger than the DERFCRE model spread.

Even after accounting for observational and internal vari-
ability uncertainties on the observed trends, three of the seven
models disagree with the observationally derived DWLWCRE

[CanESM5, IPSL CM6A-LR, and GFDL AM4 (AMIP)].
These models simulate either a positive or neutral LWCRE
response to warming instead of the observed negative re-
sponse. In DWSWCRE and DWNetCRE, models largely agree
with observations barring NASA GISS-E2.1-G. This model
increases NetCRE dramatically in response to warming

(mostly due to the SWCRE response), while observations
show a much more muted NetCRE response to warming. Us-
ing the L21 uncertainty as a stricter test for climate models,
only one model, MIROC6, falls into the observed trends
range for all three CRE budget terms (LW, SW, and Net).
Importantly, we show that the AMIP and coupled simulations
of GFDL agree strongly with each other. This suggests that
any underestimation of the CERES trends arises from problems
in the physics of the atmospheric component of the model.

d. Cloud-masking contributions

So far, we have dealt with the total CRE change and its
contributions from eCRE, DERFCRE, and DWCRE. However,
these changes could be due to the cloud properties changing
or cloud-masking properties changing. In this section we at-
tempt to understand the possible role of each, with the even-
tual aim to understand the possible range of cloud feedbacks
attributable to the observed CRE record, using the PRP
method (section 3d). The total CRE change is the sum of the
cloud-induced changes and the non-cloud-induced changes,
i.e., cloud-masking changes (appendix). In this subsection we
analyze the trends in CRE due to the cloud masking of water

FIG. 5. Trends in ERA5-PRP cloud-masking components during January 2001–December
2020: (a) LWCRE, (b) SWCRE, and (c) NetCRE. Blue (orange) bar in the left third of each
panel arises from sum of individual quantities’ blue (orange) bars. Black bar is the sum of the
warming-induced cloud masking and forcing-induced cloud masking. Error bars given by the
95% confidence intervals derived from the standard error of the linear fit.
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vapor, surface temperature, atmospheric temperature, surface
albedo, well-mixed greenhouse gases, and ozone individually
without discriminating whether it belongs to the forcing com-
ponent or the feedback component. In the next subsection, to
calculate cloud feedbacks, we assign particular quantities to
forcing versus feedback.

Before we breakdown the drivers of the cloud-masking
trends (Fig. 5 and supplemental Fig. 8), we first establish con-
fidence in our ERA5-PRP cloud-masking calculations. First,
ERA5-PRP clear-sky fluxes compare well with CERES not
only in trends but also in variability too (supplemental Fig. 1);
signaling accurate representations of water vapor, temperature,
and surface albedo in ERA5. Second, ERA5’s climatological
clouds are highly similar to observations in their spatial pattern
(Wu et al. 2022; Yao et al. 2020). Together, the radiative impact
of noncloud properties in the presence of clouds is well captured
by ERA5-PRP. We will further show below that the ERA5-PRP
cloud-masking estimates are in agreementwith previous estimates.

LWCRE shows strong cloud-masking trends and the total
cloud-masking trend could account for ;57% of observed trend
(Fig. 5a). This negative LWCRE trend largely arises from green-
house gases: water vapor, well-mixed greenhouse gases, and
ozone. This occurs because the increase in greenhouse gases sig-
nificantly decreases clear-sky OLR but decreases all-sky OLR by
not as much (20.88 versus 20.61 W m22 decade21). This is be-
cause when clouds are introduced into the column, greenhouse
gases and clouds compete for the same photons, lessening the
impact of the greenhouse gas increase on the top-of-atmosphere
flux (Soden et al. 2008; Yoshimori et al. 2020). The instantaneous
radiative forcing cloud masking from well-mixed greenhouse
gases and ozone is20.11 Wm22 decade21. This offline radiative
transfer calculation is identical to the ERF calculated from cli-
mate models (Fig. 2b), suggesting that cloud-masking IRF is the
dominant component of DERFLWCRE or suggesting there is a
cancellation of adjustments.

SWCRE cloud masking is negative mostly due to surface al-
bedo changes (Fig. 5b). Given the decrease in sea ice and land ice

over this period, reflected shortwave radiation (RSW) de-
creased significantly in clear-skies (Raghuraman et al. 2021a).
From a top-of-atmosphere perspective, when clouds are intro-
duced into the column, the albedo decreases occurring at the
surface are unable to be effectively communicated to space
in all-sky RSW (Soden et al. 2008). Thus, clouds are masking
underlying surface albedo trends and results in a negative
SWCRE cloud-masking trend. It follows that these negative
cloud-masking trends in LWCRE and SWCRE result in a
large, negative, cloud-masking trend in NetCRE (Fig. 5c).
Overall, these ERA5-PRP calculations of cloud masking
agree well with previous studies’ estimates of cloud masking
(Table 2). In particular, the agreement across generations of
GFDL models, different climate models, different experiments,
and different techniques suggests that our understanding of the
cloud masking component stands on a strong foundation.

e. Cloud feedback: Observational derivation

Although the cloud component of CRE is available from the
PRP experiments (supplemental Fig. 8), we do not use it as an es-
timate of cloud feedback since 1) the reanalysis clouds likely con-
tain the forcing component from greenhouse gases, aerosols, etc.,
so DCREcloud is a mixture of forcing and feedback and would not
give us the desired separated cloud feedback and 2) ERA5-PRP
produces incorrect all-sky fluxes compared to CERES (supple-
mental Fig. 1). We thus use our PRP estimate of cloud masking
to convert our estimate of DWCRE to cloud feedback [Eqs. (A3c)
and (A4b)]. As is common in previous studies (e.g., Soden et al.
2008), we assume atmospheric temperature, surface temperature,
water vapor, and surface albedo contributions to CRE predomi-
nantly belong to the warming-induced component of CRE rather
than the forcing and adjustments component. This allows us to
compute the cloud feedback component of the CRE trend from
observations [DWcloud 5 DCRE 2 DERFCRE 2 DWcloud-masking;
Table 1; Eq. (A4b)].

The contributions to CRE trends from ERF, cloud mask-
ing, and cloud feedback and the associated observational

TABLE 2. Global-mean cloud masking estimates across a range of models, data, and experiments. Ensemble means are presented
for studies that included multiple models or multiple experiments. Each study computes the cloud masking by PRP or radiative
kernels technique. Soden et al. (2004) values are taken from their Fig. 2 (difference between PRP and CRF). Soden et al. (2008)
values are taken from their Fig. 10; LWCRE and SWCRE breakdown was not provided so we assume water vapor 1 temperature 5

LW and SW 5 surface albedo. Yoshimori et al. 2020 values are taken from their Tables 1 and 2; we again use water vapor 1

temperature 5 LW. Sign convention: positive implies heating and negative means cooling. Uncertainty given by the 95% CI. Barring
the ERA5 row from this study, all estimates are derived from multiplying the literature values by the 2001–20 GISTEMP-observed
surface warming trend of 0.23 K decade21. Units in the three right columns are W m22 decade21. GFDL 5 NOAA Geophysical
Fluid Dynamics Laboratory. IPCC AR4 5 Intergovernmental Panel on Climate Change Assessment Report 4. MIROC5.2-A 5 Model
for Interdisciplinary Research on Climate 5.2-Atmosphere. HadGEM2-A 5 Hadley Centre Global Environment Model version
2–Atmosphere. ERA5 5 European Centre for Medium Range Forecasts Reanalysis 5. SST 5 sea surface temperature. AMIP 5

Atmospheric Modeling Intercomparison Project. TCR 5 Transient Climate Response.

Study Model/data Experiments LWCRE SWCRE NetCRE

Soden et al. (2004) GFDL AM2 SST 6 2 K 20.11 0.03 20.07
Soden et al. (2008) IPCC AR4 2000–2100 A1B Scenario 20.09 20.06 20.15
Yoshimori et al. (2020) MIROC5.2-A,

HadGEM2-A
AMIP, AMIP 1 4 K 20.12 } }

This study (Raghuraman et al. 2023) GFDL AM3,
GFDL AM4

TCR 20.10 20.06 20.15

This study (Raghuraman et al. 2023) ERA5-PRP 2001–20 20.08 6 0.02 20.06 6 0.02 20.15 6 0.03
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uncertainty and internal variability uncertainty are summa-
rized in Fig. 6 for the global-mean case. LWCREERF and cloud
masking were both negative, yielding a negative cloud feedback
that supplements it. This LW cloud feedback trend is significant
at 80% confidence with R21 observational uncertainty (20.15 6
0.14 W m22 decade21) and 95% confidence with L21 observa-
tional uncertainty (20.15 6 0.12 W m22 decade21). SWCRE
ERF was strongly positive while SWCRE cloud masking was
weakly negative, yielding a positive SW cloud feedback. This
SW cloud feedback trend is significant at 85% confidence with
R21 observational uncertainty (0.21 6 0.19 W m22 decade21)
and 95% confidence with L21 observational uncertainty (0.21 6

0.20 W m22 decade21). As a result of these significant LW and
SW cloud feedback trends of opposing signs, the net cloud feed-
back trend is only slightly positive and not significant with either
R21 or L21 uncertainty metrics at even 66% confidence (0.06 6

0.13 and 0.066 0.09Wm22 decade21, respectively). This implies
that the net cloud feedback is about as likely as not positive or
negative (Mastrandrea et al. 2010), i.e., it could amplify or dimin-
ish global warming.

These cloud feedback trend results are consistent with Table 3’s
cloud feedbacks in traditional units of W m22 K21. Our nonsig-
nificant net cloud feedback of 0.20 6 0.34 W m22 K21 stands in
contrast to previous studies that found the observed net cloud
feedback to be 0.4–0.7 W m22 K21 (Ceppi and Nowack 2021;
Chao and Dessler 2021; Chao et al. 2022; Dessler 2010, 2013;
Dessler and Loeb 2013). This discrepancy arises from most
studies having an observed LW cloud feedback that is positive
(0.1–0.6 W m22 K21), in contrast to our significant negative LW
cloud feedback of 20.38 6 0.18 W m22 K21, and the studies
had an observed positive SW cloud feedback (0–0.3 W m22 K21)
that is smaller in magnitude than our estimate of 0.58 6

0.44 W m22 K21 (Ceppi and Nowack 2021; Dessler 2010, 2013;
Dessler and Loeb 2013; Yue et al. 2019; Zhou et al. 2013).

Climate models in short-term and long-term simulations
also display large net cloud feedbacks (0.3–0.8 W m22 K21)
that arise from additive positive LW (0.3–0.6 W m22 K21)
and SW (0–0.3 W m22 K21) cloud feedbacks, with LW being
the dominant factor (Ceppi and Nowack 2021; Chao and
Dessler 2021; Chao et al. 2022; Dessler 2010, 2013; Soden and
Held 2006; Zelinka et al. 2020; Zhou et al. 2015). Models from
this study also overestimate the cloud feedback. By subtract-
ing ERA5-PRP’s cloud-masking estimate from the multimo-
del-mean DWCRE, we obtain a 0.23 W m22 decade21 for the
net cloud feedback, a large overestimation of the observed
net cloud feedback trend. Even in AMIP conditions, GFDL
AM4 shows biases in the cloud feedback trend. By subtract-
ing AM4’s cloud-masking estimate (Table 2) from DWCRE

(AM4 PSST), we obtain a 0.09 W m22 decade21 for the net
cloud feedback. However, we find that the relatively lower

FIG. 6. Summary of contributions to DCRE trends from forcing (DERFCRE; RFMIP multimo-
del mean), cloud masking (DWcloud-masking; ERA5-PRP), and cloud feedbacks (DCRE 2

DERFCRE 2 DWcloud-masking) for the global-mean January 2001–December 2020 period. Sum of
the individual bars represent the observed CRE trend and is labeled with a cross sign. Error bars
represent the 95% CI. Cloud feedback error bars arise from observational uncertainty and «CRE.
Thin and thick bars given by R21 and L21 uncertainties, respectively, for the observational un-
certainty component.

TABLE 3. Global-mean cloud feedback and CRE “feedback”
estimates derived from CERES radiation observations and
GISTEMP surface temperature anomalies during January 2001–
December 2020 [appendix, Eq. (A4b)]. lcloud is calculated using
AM4 ERF for the estimate of ERF. lCRE is calculated by
regressing monthly mean anomalies in observed CRE against
GISTEMP surface temperature; i.e., it includes all factors
including ERF and cloud masking [Eqs. (1) and (A4b)]. This
was done to show that if cloud feedback was calculated like
lCRE, an inflated value would be obtained for LW and SW.
Uncertainty is given by the 95% CI that is derived from
2s spread of lCRE values, i.e., «lCRE

, in GFDL AM4 PSST
(20 AMIP realizations). Units are W m22 K21.

Quantity Cloud feedback (lcloud) CRE feedback (lCRE)

LW CERES 20.38 6 0.18 20.72 6 0.18
SW CERES 0.58 6 0.44 0.83 6 0.44
Net CERES 0.20 6 0.34 0.11 6 0.34
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overestimation is because of compensating errors in LW
and SW: a weakly positive LW cloud feedback and a near-
zero SW cloud feedback rather than the observed cancel-
ling negative and positive LW and SW cloud feedbacks,
respectively.

5. Discussion

Recent studies have decomposed CRE changes into cloud-
controlling factors (Andersen et al. 2022; Klein et al. 2017;
Scott et al. 2020). Our study suggests that such an analysis
should include forcing in the cloud controlling factors or re-
move forcing from their SST-mediated controlling factors.
Our study showed that using CRE as a proxy for cloud feed-
back is a poor approximation since CRE is a combination of
various factors (Fig. 6, Table 3, appendix).

Another example of showing how DCRE cannot be used
directly for determining cloud feedback, because it is a convo-
lution of forcing, cloud masking, and cloud feedbacks, can be
seen in CERES-FBCT outputs of vertical and optical depth
resolved trends in CRE (Fig. 7). For example, it is known that
clouds close to the surface have a temperature close to the
surface’s, so they are ineffective in preventing the escape of
infrared radiation to space, i.e., low clouds have little impact
on LWCRE while high clouds have a large impact on
LWCRE (e.g., Zelinka and Hartmann 2010). Yet, Fig. 7a
shows significant negative LWCRE trends coming from the
lower troposphere. Given our cloud-masking results (Fig. 5),
we can infer that the LWCRE trend here is likely not due to
low cloud changes but due to water vapor and well-mixed
greenhouse gas cloud masking. Similarly, SWCRE shows signifi-
cant positive trends in the lower troposphere which stem from
cloud cover and liquid water path (LWP) decreases (Figs. 7b,d).
However, the cloud cover changes and the LWP changes are not
just SST-mediated but are likely influenced by greenhouse gas
adjustments and the aerosol-indirect effect (Figs. 2b and 3b, sup-
plemental Fig. 5). Thus, we recommend future studies take cau-
tion when interpreting FBCT and FBCT-like observational
fluxes and to remove forcing and masking before inferring feed-
backs in the observational record.

Our observationally derived net cloud feedback is small be-
cause of large LW and SW cloud feedbacks of opposite signs
while previous observational studies have a large net cloud
feedback because of additive positive LW and SW cloud feed-
backs (Ceppi and Nowack 2021; Dessler 2010, 2013; Dessler
and Loeb 2013; Yue et al. 2019). Two exceptions to this gener-
alization are the observational studies of Chao and Dessler
(2021) and Zhou et al. (2013). A negative LW cloud feedback
in observations is also supported by Loeb et al. (2021b) and
de Guélis et al. (2018) although these studies do not separate
forcing from feedback and CRE from cloud feedback, respec-
tively. The observed significant negative LW cloud feedback
in our study as well as evidence supporting this finding from
the above studies demands more attention and investigation
in future studies. It is important to decipher the mechanisms
that cause the negative LW cloud feedback because 1) it is un-
clear why some observational studies disagree not only in
magnitude but also in the sign of the LW cloud feedback, 2) it

is unclear why models in short-term and long-term simula-
tions are missing a negative LW cloud feedback, and 3) it is
an unexpected result in light of the well-established positive
altitude LW cloud feedback (e.g., Zelinka and Hartmann
2010). One possible mechanism for this negative LW cloud
feedback is a negative tropical anvil cloud area feedback as
suggested by Sherwood et al. (2020). Figure 7f suggests de-
creases in ice water path (IWP) as another pathway that could
explain this negative LW cloud feedback.

We note that the potentially larger DERFSWCRE trend from a
larger aerosol decline in the updated CEDS would reduce the
observationally derived positive SW cloud feedback’s magni-
tude and hence make the net cloud feedback’s magnitude even
closer to 0 or even slightly negative. Changing patterns of SST
warming can also cause a divergence between observed feed-
backs and simulated historical and future feedbacks in coupled
model simulations (Andrews et al. 2022; Dong et al. 2021). Ad-
ditionally, although we find consistency between the cloud feed-
backs estimated from monthly-mean anomalies (Table 3) and
cloud feedback decadal trends (Fig. 6), the latter method’s re-
sults are less susceptible to changing the start and end dates of
the time period (supplemental Fig. 4).

Finally, it is worth noting that the observational uncertainty
that sets detectability has uncertainty itself. The R21 observa-
tional uncertainty would preclude measuring a detectable
cloud feedback at 95% confidence even by 2050 (supplemental
Fig. 3). Assessing whether the “true” observational uncertainty
is more like R21 or L21 should be a priority for future observa-
tional studies, since this will not only enhance confidence in ex-
isting observational trends but also provide better constraints
for climate models.

6. Summary and conclusions

We showed that the observed global-mean trends in
LWCRE and SWCRE are extremely unlikely to be due to un-
forced variability alone (Fig. 1). SWCRE ERF was found to
have a large enough signal that it could account for slightly
over half of the observed positive SWCRE trend via cloud ad-
justments (greenhouse gas increases, aerosol decreases, and
natural forcing agents) (Figs. 2 and 3). The role of ERF was
highlighted regionally, and it was shown that the PDO has
little impact on the flux changes in the northeast Pacific (Fig. 3).
We found that cloud masking, arising from ERF and surface
warming, yielded a strongly negative trend in LWCRE
since greenhouse gases reduce OLR in clear-sky conditions
more than in all-sky conditions and could account for slightly
over half of the observed negative LWCRE trend (Figs. 4 and 5
and Table 2). Supplementing the large ERF and cloud-masking
contributions to the LW and SW CRE trends were the LW and
SW cloud feedback trends that accounted for just under half of
the observed LW and SW CRE trends (Fig. 6). The negative
LW cloud feedback and positive SW cloud feedback trends
were detectable at 80%–95% confidence depending on the ob-
servational uncertainty assumed. As a result of the strongly can-
celling LW and SW cloud feedbacks, the net cloud feedback
was found to be unconstrained in sign over the modern satellite
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era (Fig. 6). Finally, we cautioned the interpretation of CRE as
cloud feedback (Table 3 and Fig. 7).

More broadly, this study helps provide a deeper under-
standing of how heat is accumulating on the planet. This un-
derstanding is allowed by the excellent consistency in
radiation budget changes between datasets: EEI increases
were found with independent measurements (Allison et al.
2020; Hakuba et al. 2021; Kramer et al. 2021; Loeb et al.
2021b; Raghuraman et al. 2021a), we have found excellent
consistency between CERES and the Atmospheric Infrared
Sounder (AIRS) satellite all-sky LW fluxes (Raghuraman
2021), and there is good consistency between independent
Earthshine measurements of RSW and CERES (Goode et al.
2021). The classical picture of an increased greenhouse effect
from increases in greenhouse gases is correct, however, it
gets cancelled by increased surface and atmospheric emission

(GFDL AM4 clear-sky LW ERF ;0.35 W m22 decade21 and
clear-sky LW lDTs ; 20.38 W m22 decade21; Raghuraman
et al. 2019, 2021a). This study then showed that the mere
presence of clouds in a warming climate and with increasing
greenhouse gas concentrations, increases LW emission rela-
tive to clear skies (20.19 W m22 decade21; Fig. 5a’s LWCRE
total cloud masking). This implies that we do not need to in-
voke high cloud cover reductions (Norris 2005; Trenberth and
Fasullo 2009) to explain the majority of the observed LWCRE
decrease. In fact, Fig. 7b instead shows increases in high cloud
cover since 2002 (not significant). The LW cloud feedback ex-
plains the rest of the LWCRE decrease but its causes need fur-
ther investigation (see section 5) (20.15 Wm22 decade21).

The observed increase in Earth’s energy imbalance there-
fore does not come from LW changes (CERES all-sky LW
;20.28 W m22 decade21) but instead from decreased SW

FIG. 7. CERES-FBCT trends during July 2002–July 2020 for the near-global average (588S–588N). (a),(c),(e) LW,
SW, Net CRE trends, respectively. CREs are calculated for each grid point and bin using Eq. (5) of Scott et al. (2020),
then area-averaged, and then the trends are computed. (b),(d),(f) Cloud cover, liquid water path (LWP), and ice wa-
ter path (IWP) trends. LWP and IWP are cloud-fraction weighted.

R AGHURAMAN E T A L . 416315 JUNE 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:03 PM UTC



reflection (;0.70 W m22 decade21) (Raghuraman et al. 2021a).
Previously it was surmised that the decreased reflection would
manifest through the SW water vapor feedback and the ice–
albedo feedback (Donohoe et al. 2014), however, we find that
these are minority contributors (water vapor ;0.07 W m22

decade21 and surface albedo;0.15Wm22 decade21; supplemental
Tables 1 and 2). Instead, we find that the majority of the de-
creased reflection arises from SW ERF increases (;0.28 W m22

decade21; Raghuraman et al. 2021a) and the SW cloud feedback
(;0.21 W m22 decade21). Put simply, in response to external
forcing in LW and SW radiation, Earth has a stabilizing feedback
only in the LW and not in the SW, so the planet accumulates heat
in the SW.
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APPENDIX

Partial Radiation Perturbation Experiment Methodology

LetR be the radiation emanating at the top-of-atmosphere, i.e.,
outgoing longwave radiation (OLR) or reflected shortwave radia-
tion (RSW).Amonthly anomaly inR can be decomposed into

DRclear 5 DRclear
WMGHG 1 DRclear

O3
1 DRclear

H2O
1 DRclear

Ta

1 DRclear
Ts

1 DRclear
a , (A1a)

DRall 5 DRall
WMGHG 1 DRall

O3
1 DRall

H2O
1 DRall

Ta
1 DRall

Ts

1 DRall
a 1 DRall

cloud: (A1b)

Here, WMGHG represents well-mixed greenhouse gases
(CO2, CH4, N2O, CFCs, HFCs), O3 represents ozone, H2O
represents water vapor specific humidity, Ta represents at-
mospheric temperature, Ts represents surface temperature,
a represents surface albedo, and “cloud” represents cloud
properties (cloud cover, liquid water content, and ice water
content).

The impact of changes in a particular quantity, say sur-
face temperature, on all-sky TOA radiation is calculated by
the two-sided PRP (Colman and McAvaney 1997):

DRall
Ts

5
1
2
[R(WMGHG, O3, H2O, Ta, Ts, a, cloud)

2 R(WMGHG, O3, H2O, Ta, Ts, a, cloud)]

1
1
2
[R(WMGHG, O3 , H2O, Ta , Ts, a, cloud)

2 R(WMGHG, O3 , H2O, Ta , Ts, a, cloud)]:
(A2)

The overbars indicate the monthly climatology for the time
period. Overall, it captures the flux change solely due to a
surface temperature change under two base states, one with
all quantities at their varied state and one with all quanti-
ties at their climatology state. Both states, i.e., both sides of
the PRP, are then averaged out to give a symmetric and
best estimate. This two-sided PRP is similarly applied to all
other variables, and we conduct eight experiments in total:
one for each variable listed above and one for the total
[first term and last term of the four terms on the right-hand
side of Eq. (A2)].

In the context of CRE, which is the difference between
clear-sky and all-sky flux, we can write an anomaly in
CRE as

DCRE 5 (DRclear
WMGHG 2 DRall

WMGHG) 1 (DRclear
O3

2 DRall
O3
)

1 (DRclear
H2O

2 DRall
H2O

) 1 (DRclear
Ta

2 DRall
Ta
)

1 (DRclear
Ts

2 DRall
Ts
) 1 (DRclear

a 2 DRall
a )

1 (0 2 DRall
cloud), (A3a)

DCRE 5 (DCREWMGHG 1 DCREO3
1 DCREH2O

1 DCRETa
1 DCRETs

1 DCREa)

1 DCREcloud, (A3b)

DCRE 5 DCREcloud-masking 1 DCREcloud: (A3c)

This equation shows that the cloud radiative effect is the
sum of the cloud and cloud-masking components. By com-
bining Eqs. (1) and (A3c), we obtain:
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DCRE 5 (DERFcloud-masking 1 DERFcloud)
1 (DWcloud-masking 1 DWcloud)
1 (ecloud-masking 1 ecloud), (A4a)

DCRE 5 DERFCRE 1 (DWcloud-masking 1 DWcloud) 1 eCRE:

(A4b)

Note that in Eqs. (1) and (A4b), eCRE is a particular value
that satisfies this equation but in a 20-yr period there is a
range of internal variability values that could satisfy this
equation so eCRE is reported as a range in the paper. To
compute DWcloud, the cloud feedback trend, we obtain an
observationally derived estimate by subtracting the forcing
and cloud masking from the observed total CRE. Through-
out this study, trends are calculated via linear fits through
monthly anomalies time series, although calculating via annual-
mean anomalies results in the same value of the trend.

REFERENCES

Allison, L. C., M. D. Palmer, R. P. Allan, L. Hermanson, C. Liu
and D. M. Smith, 2020: Observations of planetary heating
since the 1980s from multiple independent datasets. Environ.
Res. Commun., 2, 101001, https://doi.org/10.1088/2515-7620/
abbb39.

Andersen, H., J. Cermak, L. Zipfel, T. A. Myers, 2022: Attribution
of observed recent decrease in low clouds over the northeast-
ern Pacific to cloud-controlling factors. Geophys. Res. Lett.,
49, e2021GL096498, https://doi.org/10.1029/2021GL096498.

Andrews, T., C. J. Smith, G. Myhre, P. M. Forster, R. Chadwick,
and D. Ackerley, 2021: Effective radiative forcing in a GCM
with fixed surface temperatures. J. Geophys. Res. Atmos.,
126, e2020JD033880, https://doi.org/10.1029/2020JD033880.

}}, and Coauthors, 2022: On the effect of historical SST pat-
terns on radiative feedback. J. Geophys. Res. Atmos., 127,
e2022JD036675, https://doi.org/10.1029/2022JD036675.

Bellomo, K., A. C. Clement, J. R. Norris, and B. J. Soden, 2014:
Observational and model estimates of cloud amount feed-
back over the Indian and Pacific Oceans. J. Climate, 27, 925–
940, https://doi.org/10.1175/JCLI-D-13-00165.1.

Block, K., and T. Mauritsen, 2013: Forcing and feedback in the
MPI-ESM-LR coupled model under abruptly quadrupled
CO2. J. Adv. Model. Earth Syst., 5, 676–691, https://doi.org/
10.1002/jame.20041.

Brient, F., and T. Schneider, 2016: Constraints on climate sensitivity
from space-based measurements of low-cloud reflection. J. Cli-
mate, 29, 5821–5835, https://doi.org/10.1175/JCLI-D-15-0897.1.

Ceppi, P., and P. Nowack, 2021: Observational evidence that cloud
feedback amplifies global warming. Proc. Natl. Acad. Sci. USA,
118, e2026290118, https://doi.org/10.1073/pnas.2026290118.

Cesana, G., A. D. Del Genio, A. S. Ackerman, M. Kelley,
G. Elsaesser, A. M. Fridlind, Y. Cheng, and M.-S. Yao, 2019:
Evaluating models’ response of tropical low clouds to SST
forcings using CALIPSO observations. Atmos. Chem. Phys.,
19, 2813–2832, https://doi.org/10.5194/acp-19-2813-2019.

Cesana, G. V., and A. D. Del Genio, 2021: Observational constraint
on cloud feedbacks suggests moderate climate sensitivity. Nat.
Climate Change, 11, 213–218, https://doi.org/10.1038/s41558-
020-00970-y.

Chao, L.-W., and A. E. Dessler, 2021: An assessment of climate
feedbacks in observations and climate models using different
energy balance frameworks. J. Climate, 34, 9763–9773, https://
doi.org/10.1175/JCLI-D-21-0226.1.

Chao, L.-W., J. C. Muller, and A. E. Dessler, 2022: Impacts of the
unforced pattern effect on the cloud feedback in CERES ob-
servations and climate models. Geophys. Res. Lett., 49,
e2021GL096299, https://doi.org/10.1029/2021GL096299.

Clark, J. P., E. E. Clothiaux, S. B. Feldstein, S. Lee, 2021: Drivers
of global clear sky surface downwelling longwave irradi-
ance trends from 1984 to 2017. Geophys. Res. Lett., 48,
e2021GL093961, https://doi.org/10.1029/2021GL093961.

Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observa-
tional and model evidence for positive low-level cloud feed-
back. Science, 325, 460–464, https://doi.org/10.1126/science.
1171255.

Colman, R. A., and B. J. McAvaney, 1997: A study of general cir-
culation model climate feedbacks determined from perturbed
sea surface temperature experiments. J. Geophys. Res., 102,
19 383–19 402, https://doi.org/10.1029/97JD00206.

de Guélis, V. T., H. Chepfer, R. Guzman, M. Bonazzola, D. M.
Winker, V. Noel, 2018: Space lidar observations constrain
longwave cloud feedback. Sci. Rep., 8, 16570, https://doi.org/
10.1038/s41598-018-34943-1.

Dessler, A. E., 2010: A determination of the cloud feedback from
climate variations over the past decade. Science, 330, 1523–
1527, https://doi.org/10.1126/science.1192546.

}}, 2013: Observations of climate feedbacks over 2000–10 and
comparisons to climate models. J. Climate, 26, 333–342,
https://doi.org/10.1175/JCLI-D-11-00640.1.

}}, and N. G. Loeb, 2013: Impact of dataset choice on calcula-
tions of the short-term cloud feedback. J. Geophys. Res. At-
mos., 118, 2821–2826, https://doi.org/10.1002/jgrd.50199.

Dong, Y., and Coauthors, 2021: Biased estimates of equilibrium
climate sensitivity and transient climate response derived
from historical CMIP6 simulations. Geophys. Res. Lett., 48,
e2021GL095778, https://doi.org/10.1029/2021GL095778.

Donohoe, A., K. C. Armour, A. G. Pendergrass, and D. S. Battisti,
2014: Shortwave and longwave radiative contributions to global
warming under increasing CO2. Proc. Natl. Acad. Sci. USA,
111, 16700–16705, https://doi.org/10.1073/pnas.1412190111.

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J.
Stouffer, and K. E. Taylor, 2016: Overview of the Coupled
Model Intercomparison Project phase 6 (CMIP6) experimen-
tal design and organization. Geosci. Model Dev., 9, 1937–
1958, https://doi.org/10.5194/gmd-9-1937-2016.

Forster, P., and Coauthors, 2021: The Earth’s energy budget, cli-
mate feedbacks, and climate sensitivity. Climate Change 2021:
The Physical Science Basis, V. Masson-Delmotte et al., Eds.,
Cambridge University Press, 923–1054.

Gelaro,R., andCoauthors, 2017: TheModern-EraRetrospectiveAnal-
ysis for Research and Applications, version 2 (MERRA-2). J. Cli-
mate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.

Gidden, M. J., and Coauthors, 2019: Global emissions pathways
under different socioeconomic scenarios for use in CMIP6: A
dataset of harmonized emissions trajectories through the end
of the century. Geosci. Model Dev., 12, 1443–1475, https://doi.
org/10.5194/gmd-12-1443-2019.

GISTEMP Team, 2023: GISS Surface Temperature Analysis
(GISTEMP), version 4. NASA Goddard Institute for Space Stud-
ies, accessed 29 March 2021, https://data.giss.nasa.gov/gistemp/.

Goode, P. R., E. Pallé, A. Shoumko, S. Shoumko, P. Montañes-
Rodriguez, and S. E. Koonin, 2021: Earth’s albedo 1998–2017

RAGHURAMAN E T A L . 416515 JUNE 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:03 PM UTC

https://doi.org/10.1088/2515-7620/abbb39
https://doi.org/10.1088/2515-7620/abbb39
https://doi.org/10.1029/2021GL096498
https://doi.org/10.1029/2020JD033880
https://doi.org/10.1029/2022JD036675
https://doi.org/10.1175/JCLI-D-13-00165.1
https://doi.org/10.1002/jame.20041
https://doi.org/10.1002/jame.20041
https://doi.org/10.1175/JCLI-D-15-0897.1
https://doi.org/10.1073/pnas.2026290118
https://doi.org/10.5194/acp-19-2813-2019
https://doi.org/10.1038/s41558-020-00970-y
https://doi.org/10.1038/s41558-020-00970-y
https://doi.org/10.1175/JCLI-D-21-0226.1
https://doi.org/10.1175/JCLI-D-21-0226.1
https://doi.org/10.1029/2021GL096299
https://doi.org/10.1029/2021GL093961
https://doi.org/10.1126/science.1171255
https://doi.org/10.1126/science.1171255
https://doi.org/10.1029/97JD00206
https://doi.org/10.1038/s41598-018-34943-1
https://doi.org/10.1038/s41598-018-34943-1
https://doi.org/10.1126/science.1192546
https://doi.org/10.1175/JCLI-D-11-00640.1
https://doi.org/10.1002/jgrd.50199
https://doi.org/10.1029/2021GL095778
https://doi.org/10.1073/pnas.1412190111
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.5194/gmd-12-1443-2019
https://doi.org/10.5194/gmd-12-1443-2019
https://data.giss.nasa.gov/gistemp/


as measured from earthshine. Geophys. Res. Lett., 48,
e2021GL094888, https://doi.org/10.1029/2021GL094888.

Gregory, J., and M. Webb, 2008: Tropospheric adjustment induces
a cloud component in CO2 forcing. J. Climate, 21, 58–71,
https://doi.org/10.1175/2007JCLI1834.1.

Hakuba, M. Z., T. Frederikse, and F. W. Landerer, 2021: Earth’s
energy imbalance from the ocean perspective (2005–2019).
Geophys. Res. Lett., 48, e2021GL093624, https://doi.org/10.
1029/2021GL093624.

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis.
Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.
1002/qj.3803.

Hoesly, R. M., and Coauthors, 2018: Historical (1750–2014) an-
thropogenic emissions of reactive gases and aerosols from the
community emissions data system (CEDS). Geosci. Model
Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018.

Hofmann, D. J., J. H. Butler, E. J. Dlugokencky, J. W. Elkins,
K. Masarie, S. A. Montzka, and P. Tans, 2006: The role of
carbon dioxide in climate forcing from 1979 to 2004: Intro-
duction of the annual greenhouse gas index. Tellus, 58B, 614–
619, https://doi.org/10.1111/j.1600-0889.2006.00201.x.

Klein, S. A., A. Hall, J. R. Norris, and R. Pincus, 2017: Low-cloud
feedbacks from cloud-controlling factors: A review. Shallow
Clouds, Water Vapor, Circulation, and Climate Sensitivity,
Springer, 135–157.

Kramer, R. J., H. He, B. J. Soden, L. Oreopoulos, G. Myhre,
P. M. Forster, and C. J. Smith, 2021: Observational evidence
of increasing global radiative forcing. Geophys. Res. Lett., 48,
e2020GL091585, https://doi.org/10.1029/2020GL091585.

Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A.
Persin, R. Ruedy, D. Zyss, 2019: Improvements in the GIS-
TEMP uncertainty model. J. Geophys. Res. Atmos., 124,
6307–6326, https://doi.org/10.1029/2018JD029522.

Loeb, N. G., and D. R. Doelling, 2020: CERES energy balanced
and filled (EBAF) from afternoon-only satellite orbits. Re-
mote Sens., 12, 1280, https://doi.org/10.3390/rs12081280.

}}, N. Manalo-Smith, W. Su, M. Shankar, and S. Thomas, 2016:
CERES top-of-atmosphere Earth radiation budget climate
data record: Accounting for in-orbit changes in instrument
calibration. Remote Sens., 8, 182, https://doi.org/10.3390/
rs8030182.

}}, T. J. Thorsen, J. R. Norris, H. Wang, and W. Su, 2018a:
Changes in Earth’s energy budget during and after the “pause”
in global warming: An observational perspective. Climate, 6,
62, https://doi.org/10.3390/cli6030062.

}}, and Coauthors, 2018b: Clouds and the Earth’s Radiant En-
ergy System (CERES) Energy Balanced and Filled (EBAF)
top-of-atmosphere (TOA) edition-4.0 data product. J. Cli-
mate, 31, 895–918, https://doi.org/10.1175/JCLI-D-17-0208.1.

}}, and Coauthors, 2020a: Toward a consistent definition be-
tween satellite and model clear-sky radiative fluxes. J. Cli-
mate, 33, 61–75, https://doi.org/10.1175/JCLI-D-19-0381.1.

}}, and Coauthors, 2020b: New generation of climate models
track recent unprecedented changes in Earth’s radiation budget
observed by CERES. Geophys. Res. Lett., 47, e2019GL086705,
https://doi.org/10.1029/2019GL086705.

}}, W. Su, N. Bellouin, and Y. Ming, 2021a: Changes in clear-
sky shortwave aerosol direct radiative effects since 2002. J.
Geophys. Res. Atmos., 126, e2020JD034090, https://doi.org/10.
1029/2020JD034090.

}}, G. C. Johnson, T. J. Thorsen, J. M. Lyman, F. G. Rose, and
S. Kato, 2021b: Satellite and ocean data reveal marked

increase in Earth’s heating rate. Geophys. Res. Lett., 48,
e2021GL093047, https://doi.org/10.1029/2021GL093047.

}}, and Coauthors, 2022: Evaluating twenty-year trends in
Earth’s energy flows from observations and reanalyses. J.
Geophys. Res. Atmos., 127, e2022JD036686, https://doi.org/10.
1029/2022JD036686.

Lutsko, N. J., M. Popp, R. H. Nazarian, A. L. Albright, 2021: Emer-
gent constraints on regional cloud feedbacks. Geophys. Res.
Lett., 48, e2021GL092934, https://doi.org/10.1029/2021GL092934.

Mastrandrea, M. D., and Coauthors, 2010: Guidance note for lead
authors of the IPCC fifth assessment report on consistent
treatment of uncertainties. IPCC, 4 pp., https://www.ipcc.ch/
site/assets/uploads/2018/05/uncertainty-guidance-note.pdf.

Myers, T. A., C. R. Mechoso, G. V. Cesana, M. J. DeFlorio, and
D. E. Waliser, 2018: Cloud feedback key to marine heatwave
off Baja California. Geophys. Res. Lett., 45, 4345–4352,
https://doi.org/10.1029/2018GL078242.

}}, R. C. Scott, M. D. Zelinka, S. A. Klein, J. R. Norris and
P. M. Caldwell, 2021: Observational constraints on low cloud
feedback reduce uncertainty of climate sensitivity. Nat. Climate
Change, 11, 501–507, https://doi.org/10.1038/s41558-021-01039-0.

Norris, J. R., 2005: Multidecadal changes in near-global cloud
cover and estimated cloud cover radiative forcing. J. Geophys.
Res., 110, D08206, https://doi.org/10.1029/2004JD005600.

O’Rourke, P. R, and Coauthors, 2021: CEDS v-2021-02-05
emission data 1975–2019 (version 5 February 2021). Zenodo,
accessed 5 February 2021, https://zenodo.org/record/4509372#.
ZAXA8nZByUk.

Pincus, R., R. Hemler, and S. A. Klein, 2006: Using stochastically
generated subcolumns to represent cloud structure in a large-
scale model. Mon. Wea. Rev., 134, 3644–3656, https://doi.org/
10.1175/MWR3257.1.

}}, P. M. Forster, and B. Stevens, 2016: The Radiative Forcing
Model Intercomparison Project (RFMIP): Experimental pro-
tocol for CMIP6. Geosci. Model Dev., 9, 3447–3460, https://
doi.org/10.5194/gmd-9-3447-2016.

}}, E. J. Mlawer, and J. S. Delamere, 2019: Balancing accuracy,
efficiency, and flexibility in radiation calculations for dynami-
cal models. J. Adv. Model. Earth Syst., 11, 3074–3089, https://
doi.org/10.1029/2019MS001621.

Raghuraman, S. P., 2021: Changes in the satellite-observed radia-
tion budget: Manifestations of radiative forcing, feedbacks,
and internal variability. Ph.D. dissertation, Princeton Univer-
sity, 179 pp.

}}, 2023: Forcing, cloud feedbacks, cloud masking, and internal
variability in the cloud radiative effect satellite record (code).
Zenodo, https://doi.org/10.5281/zenodo.7623105.

}}, D. Paynter, and V. Ramaswamy, 2019: Quantifying the
drivers of the clear sky greenhouse effect, 2000–2016. J. Geo-
phys. Res. Atmos., 124, 11 354–11 371, https://doi.org/10.1029/
2019JD031017.

}}, }}, and }}, 2021a: Anthropogenic forcing and response
yield observed positive trend in Earth’s energy imbalance.
Nat. Commun., 12, 4577, https://doi.org/10.1038/s41467-021-
24544-4.

}}, }}, and }}, 2021b: Anthropogenic forcing and response
yield observed positive trend in Earth’s energy imbalance
(data). Zenodo, https://doi.org/10.5281/zenodo.4784726.

}}, }}, R. Menzel, and V. Ramaswamy, 2023: Forcing,
cloud feedbacks, cloud masking, and internal variability in
the cloud radiative effect satellite record (data). Zenodo,
https://doi.org/10.5281/zenodo.7623726.

J OURNAL OF CL IMATE VOLUME 364166

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:03 PM UTC

https://doi.org/10.1029/2021GL094888
https://doi.org/10.1175/2007JCLI1834.1
https://doi.org/10.1029/2021GL093624
https://doi.org/10.1029/2021GL093624
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/gmd-11-369-2018
https://doi.org/10.1111/j.1600-0889.2006.00201.x
https://doi.org/10.1029/2020GL091585
https://doi.org/10.1029/2018JD029522
https://doi.org/10.3390/rs12081280
https://doi.org/10.3390/rs8030182
https://doi.org/10.3390/rs8030182
https://doi.org/10.3390/cli6030062
https://doi.org/10.1175/JCLI-D-17-0208.1
https://doi.org/10.1175/JCLI-D-19-0381.1
https://doi.org/10.1029/2019GL086705
https://doi.org/10.1029/2020JD034090
https://doi.org/10.1029/2020JD034090
https://doi.org/10.1029/2021GL093047
https://doi.org/10.1029/2022JD036686
https://doi.org/10.1029/2022JD036686
https://doi.org/10.1029/2021GL092934
https://www.ipcc.ch/site/assets/uploads/2018/05/uncertainty-guidance-note.pdf
https://www.ipcc.ch/site/assets/uploads/2018/05/uncertainty-guidance-note.pdf
https://doi.org/10.1029/2018GL078242
https://doi.org/10.1038/s41558-021-01039-0
https://doi.org/10.1029/2004JD005600
https://zenodo.org/record/4509372#.ZAXA8nZByUk
https://zenodo.org/record/4509372#.ZAXA8nZByUk
https://doi.org/10.1175/MWR3257.1
https://doi.org/10.1175/MWR3257.1
https://doi.org/10.5194/gmd-9-3447-2016
https://doi.org/10.5194/gmd-9-3447-2016
https://doi.org/10.1029/2019MS001621
https://doi.org/10.1029/2019MS001621
https://doi.org/10.5281/zenodo.7623105
https://doi.org/10.1029/2019JD031017
https://doi.org/10.1029/2019JD031017
https://doi.org/10.1038/s41467-021-24544-4
https://doi.org/10.1038/s41467-021-24544-4
https://doi.org/10.5281/zenodo.4784726
https://doi.org/10.5281/zenodo.7623726


Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R.
Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-
radiative forcing and climate: Results from the Earth Ra-
diation Budget experiment. Science, 243, 57–63, https://
doi.org/10.1126/science.243.4887.57.

Ramaswamy, V., and Coauthors, 2019: Radiative forcing of climate:
The historical evolution of the radiative forcing concept, the
forcing agents and their quantification, and applications. A Cen-
tury of Progress in Atmospheric and Related Sciences: Celebrating
the American Meteorological Society Centennial, Meteor.
Monogr., Vol. 59, https://doi.org/10.1175/AMSMONOGRAPHS-
D-19-0001.1.

Romps, D. M., 2020: Climate sensitivity and the direct effect of
carbon dioxide in a limited-area cloud-resolving model. J. Cli-
mate, 33, 3413–3429, https://doi.org/10.1175/JCLI-D-19-0682.1.

Salvi, P., P. Ceppi, and J. M. Gregory, 2021: Interpreting the de-
pendence of cloud-radiative adjustment on forcing agent.
Geophys. Res. Lett., 48, e2021GL093616, https://doi.org/10.
1029/2021GL093616.

Schneider, T., C. M. Kaul, and K. G. Pressel, 2019: Possible cli-
mate transitions from breakup of stratocumulus decks under
greenhouse warming. Nature Geosci., 12, 163–167, https://doi.
org/10.1038/s41561-019-0310-1.

Scott, R. C., T. A. Myers, J. R. Norris, M. D. Zelinka, S. A. Klein,
M. Sun, and D. R. Doelling, 2020: Observed sensitivity of
low-cloud radiative effects to meteorological perturbations
over the global oceans. J. Climate, 33, 7717–7734, https://doi.
org/10.1175/JCLI-D-19-1028.1.

Shankar, M., W. Su, N. Manalo-Smith, and N. G. Loeb, 2020:
Generation of a seamless Earth radiation budget climate data
record: A new methodology for placing overlapping satellite
instruments on the same radiometric scale. Remote Sens., 12,
2787, https://doi.org/10.3390/rs12172787.

Sherwood, S. C., and Coauthors, 2020: An assessment of Earth’s cli-
mate sensitivity using multiple lines of evidence. Rev. Geophys.,
58, e2019RG000678, https://doi.org/10.1029/2019RG000678.

Soden, B. J., and I. M. Held, 2006: An assessment of climate feed-
backs in coupled ocean–atmosphere models. J. Climate, 19,
3354–3360, https://doi.org/10.1175/JCLI3799.1.

}}, A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forc-
ing to estimate cloud feedback. J. Climate, 17, 3661–3665, https://
doi.org/10.1175/1520-0442(2004)017,3661:OTUOCF.2.0.CO;2.

}}, I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A.
Shields, 2008: Quantifying climate feedbacks using radiative
kernels. J. Climate, 21, 3504–3520, https://doi.org/10.1175/
2007JCLI2110.1.

Sun, M., D. R. Doelling, N. G. Loeb, R. C. Scott, J. Wilkins, L. T.
Nguyen, and P. Mlynczak, 2022: Clouds and the Earth’s Ra-
diant Energy System (CERES) FluxByCldTyp edition 4 data
product. J. Atmos. Oceanic Technol., 39, 303–318, https://doi.
org/10.1175/JTECH-D-21-0029.1.

Thorsen, T. J., S. Kato, N. G. Loeb, and F. G. Rose, 2018:
Observation-based decomposition of radiative perturba-
tions and radiative kernels. J. Climate, 31, 10 039–10 058,
https://doi.org/10.1175/JCLI-D-18-0045.1.

Tompkins, A. M., 2002: A prognostic parameterization for the
subgrid-scale variability of water vapor and clouds in large-
scale models and its use to diagnose cloud cover. J. Atmos.
Sci., 59, 1917–1942, https://doi.org/10.1175/1520-0469(2002)059
,1917:APPFTS.2.0.CO;2.

Trenberth, K. E., and J. T. Fasullo, 2009: Global warming due to
increasing absorbed solar radiation. Geophys. Res. Lett., 36,
L07706, https://doi.org/10.1029/2009GL037527.

Webb, M. J., and A. P. Lock, 2013: Coupling between subtropical
cloud feedback and the local hydrological cycle in a climate
model. Climate Dyn., 41, 1923–1939, https://doi.org/10.1007/
s00382-012-1608-5.

}}, and }}, 2020: Testing a physical hypothesis for the relation-
ship between climate sensitivity and double-ITCZ bias in cli-
mate models. J. Adv. Model. Earth Syst., 12, e2019MS001999,
https://doi.org/10.1029/2019MS001999.

}}, and Coauthors, 2015a: The diurnal cycle of marine cloud
feedback in climate models. Climate Dyn., 44, 1419–1436,
https://doi.org/10.1007/s00382-014-2234-1.

}}, and Coauthors, 2015b: The impact of parametrized convec-
tion on cloud feedback. Philos. Trans. Roy. Soc., 373A,
20140414, https://doi.org/10.1098/rsta.2014.0414.

}}, A. P. Lock, and F. H. Lambert, 2018: Interactions between
hydrological sensitivity, radiative cooling, stability, and low-
level cloud amount feedback. J. Climate, 31, 1833–1850,
https://doi.org/10.1175/JCLI-D-16-0895.1.

Wilcox, E. M., G. Roberts, and V. Ramanathan, 2006: Influence
of aerosols on the shortwave cloud radiative forcing from
North Pacific oceanic clouds: Results from the Cloud Indirect
Forcing Experiment (CIFEX). Geophys. Res. Lett., 33,
L21804, https://doi.org/10.1029/2006GL027150.

Wu, H., X. Xu, T. Luo, Y. Yang, Z. Xiong, and Y. Wang, 2022:
Variation and comparison of cloud cover in MODIS and
four reanalysis datasets of ERA-interim, ERA5, MERRA-2
and NCEP. Atmos. Res., 281, 106477, https://doi.org/10.1016/j.
atmosres.2022.106477.

Wyant, M. C., C. S. Bretherton, P. N. Blossey, and M. Khairoutdi-
nov, 2012: Fast cloud adjustment to increasing CO2 in a
superparameterized climate model. J. Adv. Model. Earth
Syst., 4, M05001, https://doi.org/10.1029/2011MS000092.

Yao, B., S. Teng, R. Lai, X. Xu, Y. Yin, C. Shi, and C. Liu, 2020:
Can atmospheric reanalyses (CRA and ERA5) represent
cloud spatiotemporal characteristics? Atmos. Res., 244,
105091, https://doi.org/10.1016/j.atmosres.2020.105091.

Yoshimori, M., F. H. Lambert, M. J. Webb, and T. Andrews,
2020: Fixed anvil temperature feedback: Positive, zero, or
negative? J. Climate, 33, 2719–2739, https://doi.org/10.1175/
JCLI-D-19-0108.1.

Yue, Q., B. H. Kahn, E. J. Fetzer, S. Wong, X. Huang, and
M. Schreier, 2019: Temporal and spatial characteristics of
short-term cloud feedback on global and local interannual cli-
mate fluctuations from A-Train observations. J. Climate, 32,
1875–1893, https://doi.org/10.1175/JCLI-D-18-0335.1.

Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave
cloud feedback positive? J. Geophys. Res., 115, D16117,
https://doi.org/10.1029/2010JD013817.

}}, T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell,
P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher
climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47,
e2019GL085782, https://doi.org/10.1029/2019GL085782.

Zhao, M., and Coauthors, 2018: The GFDL global atmosphere
and land model AM4. 0/LM4. 0: 1. Simulation characteristics
with prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691–734,
https://doi.org/10.1002/2017MS001208.

Zhou, C., M. D. Zelinka, A. E. Dessler, and P. Yang, 2013: An analy-
sis of the short-term cloud feedback using MODIS data. J. Cli-
mate, 26, 4803–4815, https://doi.org/10.1175/JCLI-D-12-00547.1.

}}, }}, }}, and S. A. Klein, 2015: The relationship between
interannual and long-term cloud feedbacks. Geophys. Res.
Lett., 42, 10 463–10469, https://doi.org/10.1002/2015GL066698.

R AGHURAMAN E T A L . 416715 JUNE 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:03 PM UTC

https://doi.org/10.1126/science.243.4887.57
https://doi.org/10.1126/science.243.4887.57
https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0001.1
https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0001.1
https://doi.org/10.1175/JCLI-D-19-0682.1
https://doi.org/10.1029/2021GL093616
https://doi.org/10.1029/2021GL093616
https://doi.org/10.1038/s41561-019-0310-1
https://doi.org/10.1038/s41561-019-0310-1
https://doi.org/10.1175/JCLI-D-19-1028.1
https://doi.org/10.1175/JCLI-D-19-1028.1
https://doi.org/10.3390/rs12172787
https://doi.org/10.1029/2019RG000678
https://doi.org/10.1175/JCLI3799.1
https://doi.org/10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2
https://doi.org/10.1175/2007JCLI2110.1
https://doi.org/10.1175/2007JCLI2110.1
https://doi.org/10.1175/JTECH-D-21-0029.1
https://doi.org/10.1175/JTECH-D-21-0029.1
https://doi.org/10.1175/JCLI-D-18-0045.1
https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2
https://doi.org/10.1029/2009GL037527
https://doi.org/10.1007/s00382-012-1608-5
https://doi.org/10.1007/s00382-012-1608-5
https://doi.org/10.1029/2019MS001999
https://doi.org/10.1007/s00382-014-2234-1
https://doi.org/10.1098/rsta.2014.0414
https://doi.org/10.1175/JCLI-D-16-0895.1
https://doi.org/10.1029/2006GL027150
https://doi.org/10.1016/j.atmosres.2022.106477
https://doi.org/10.1016/j.atmosres.2022.106477
https://doi.org/10.1029/2011MS000092
https://doi.org/10.1016/j.atmosres.2020.105091
https://doi.org/10.1175/JCLI-D-19-0108.1
https://doi.org/10.1175/JCLI-D-19-0108.1
https://doi.org/10.1175/JCLI-D-18-0335.1
https://doi.org/10.1029/2010JD013817
https://doi.org/10.1029/2019GL085782
https://doi.org/10.1002/2017MS001208
https://doi.org/10.1175/JCLI-D-12-00547.1
https://doi.org/10.1002/2015GL066698

